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EXECUTIVE SUMMARY 
 

Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural 
resource management situations. This report has two purposes.  

First, it aims to provide an overview of advanced multicriteria approaches, methods and tools. The review seeks to 
layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting 
real-life decision-making processes is provided with relation to requirements imposed by organizationally 
decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different 
classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental 
properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control 
aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the 
importance of manipulating decision elements by means of hierarching and clustering. The review goes beyond 
traditional MCDA techniques; it describes new modelling approaches. 

The second purpose is to describe new MCDA paradigms aimed at addressing the inherent complexity of 
managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models, 
multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional 
models are made to point out the need for, and propose a call to, a new way of thinking about MCDA as they are 
applied to water and natural resources management planning. These new perspectives do not undermine the value of 
traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem 
structuring. 

Literature review show successfully integrations of watershed management optimization models to efficiently 
screen a broad range of technical, economic, and policy management options within a watershed system framework 
and select the optimal combination of management strategies and associated water allocations for designing a 
sustainable watershed management plan at least cost. Papers show applications in watershed management model that 
integrates both natural and human elements of a watershed system including the management of ground and surface 
water sources, water treatment and distribution systems, human demands, wastewater treatment and collection 
systems, water reuse facilities, nonpotable water distribution infrastructure, aquifer storage and recharge facilities, 
storm water, and land use  

 



INTRODUCTION 
 

By the end of 2000, the European Commission published the Water Framework Directive (WFD) 2000/60/CE, 
establishing a framework for common action in the field of water policy that may be considered as the “most 
significant piece of European water legislation for over twenty years” [Foster et al., 2000]. This new legislation, 
through its 26 articles, provides the basis to achieve the sustainable management of water resources following an 
integrated approach. 

After this WFD, many difficulties have arisen for policy–makers, when they have to deal with decisions related to 
the environmental field and, in particular, with water management. Integrated Water Resources Planning and 
Management is considered a very complex issue, since it is usually solved by multisectorial-interdisciplinary 
hierarchical decomposition approaches. In general, integrated management indicates the consideration of water, socio-
economic and environmental issues. 

However, and to complicate the process even further, it is also necessary to consider, as in general environmental 
planning, that there is a large number of decision-makers involved in the process with conflicting preferences and 
judgement values [Lahdelma et al. 2000]. 

In this regard, decision problems concerning environmental and natural resources management are usually complex 
or even hyper-complex problems [Brans, 2002]. A deep analysis and decision making process requires a high 
background on environmental, economic and social disciplines. At this point, sometimes it is not easy to develop 
policies with the agreement of all the policy units involved in the water resources management.  

The existing links between water policy and other related fields entails that decisions in water resources 
management affect, and are affected by other policy areas. So we cannot consider water policy as an isolated task, nor 
can the development of policies in other areas be accomplished without referencing them to water policy. Areas like 
environment, energy, industry, agriculture, tourism have an important role on the management of water resources and 
water policy. 

By using multicriteria methods we do not aim at obtaining the right answer when we have to decide between 
different sets of policy options, nor at providing an objective analysis which will relieve decision makers from their 
responsibility of making difficult judgements. Rather, we aim at making the subjective judgements explicit, and the 
process through which they are taken into account transparent, a very important issue when a large number of actors 
are involved in the decision process [Belton et al., 2002]. 

Many applications of multicriteria analysis (MCA) conclude that their main value does not lie in providing the 
‘answer’, but in endowing such process with an improved transparency; setting a better structuring of the problems; 
and facilitating decision maker learning [Ananda and Herath, 2003]; [Prato, 1999]; [Mills et al., 1996]. Even if 
decision makers disagree with MCA’s output, it can still provide a valuable input to the decision procedure [RAC, 
1992]. The notion of MCA as a ‘glass box’, rather than a ‘black box’, suggests that those using MCA techniques can 
understand in a better way the implicit trade-offs and appreciate the consequences of alternative preference-positions. 
Arguments for adopting formalized MCA over otherwise decision makers’ unaided and informal selection procedures 
often rest upon its capacity to improve the decision procedure by making choices analytically robust, accountable and 
auditable [Dunning et al., 2000; Schultz, 2001]. 

 

 

 

 DELIVERABLE OBJECTIVES 
 

The objective of this report is to make a review of existing literature on Multi-Criteria Optimization (MCO) tools, 
linked to biophysical models used in the field of water management. This task is subdivided into 2 sub-tasks: 

• Review of MCO: Review existing methodology of multi criteria optimization techniques, with a focus on 
methodologies, their strengths and weaknesses in view of their application to the present case.  

• Review of biophysical models linked to MCO: Review of the actual use of MCO and biophysical models in 
the field of water resources management  

 



DEFINITIONS, ACRONYMS, ABBREVIATIONS 

  

ACO Ant Colony Optimization  

AHP Analytical Hierarchy Process 

BCA Benefit Cost Analysis 

CP Compromise Programming 

DEA Data Envelopment Analysis 

DM Decision Maker 

DSS Decision Support Systems 

EA Evolutionary Algorithm 

ES Expert Systems 

GA Genetic Algorithms 

GIS Geographic Information Systems 

GP Goal Programming 

IWI Index of Watershed Indicators 

IWRM Integrated Water Resource Management 

KBS Knowledge Based Systems 

MADM Multi-attribute Decision Making 

MAUT Multi-Attribute Utility Theory 

MCA Multi-Criteria Analysis 

MCDA Multi-Criteria Decision Analyses 

MCDM Multicriteria Decision Making 

MCO Multi-Criteria Optimization 

MODE Multi-objective Differential Evolution 

MODS Multiple Objective Decision Support 

MOILP Multiple Objective Integer Linear Programming 

MOLP Multiple Objective Linear Programming) 

MOMP Multi-Objective Mathematical Programming 

MOO Multi-Objective Optimization 

MOOP Multi-Objective Optimization Problem 

NMOO Nonlinear Multiple Objective Optimization 



SA Simulated Annealing 

SAW Simple Additive Weighting 

SMART Simple Multiattribute Rating Technique 

SPW Simple Product Weighting 

SSE Stochastic Search Engines 

SWAT Soil and Water Assessment Tool 

TOPSIS Technique for Order Preference by Similarity to Ideal Solution 

TS Tabu Search 

WFD Water Framework Directive 

  

 

 

 

 

 

STRUCTURE OF THE DOCUMENT 

 

The third section is a general introduction to optimization problems. Next section describes the differences between 
univariate and multivariate optimization problems, in order to undertake a detailed review of the classifications of 
multi-criteria decision methods, with special emphasis on stochastic optimization techniques. Section five presents the 
applications which are ‘state of the art’, and that integrate multi-criteria optimization and biophysical models, 
especially those devoted to link biophysical models used in the field of water management. Finally, the bibliography 
and an annex with alternative classifications of MCDA methods are presented. 

 



OPTIMIZATION 
 

One of the most fundamental principles in our world is the search for an optimal state. It begins in the microcosm 
where atoms in physics try to form bonds1 in order to minimize the energy of their electrons [Pauling 1960]. When 
molecules form solid bodies during the process of freezing, they try to assume energy-optimal crystal structures. 
These processes, of course, are not driven by any higher intention but purely result from the laws of physics. 

The same goes for the biological principle of survival of the fittest [Spencer, 1867] which, together with the 
biological evolution [Darwin, 1859], leads to better adaptation of the species to their environment. Here, a local 
optimum is a well-adapted species that dominates all other animals in its surroundings. Homo sapiens have reached 
this level, sharing it with ants, bacteria, flies, cockroaches, and all sorts of other creepy creatures. 

As long as humankind exists, we strive for perfection in many areas. We want to reach a maximum degree of 
happiness with the least amount of effort. In our economy, profit and sales must be maximized and costs should be as 
low as possible. Therefore, optimization is one of the oldest of sciences which even extends into daily life [Neumaier, 
2006]. 

The goal of global optimization is to find the best possible elements x* from a set X according to a set of criteria F 
= {f1, f2, .., fn}. These criteria are expressed as mathematical functions, the so-called objective functions. A 
mathematical optimization model consists mainly three basic sets of elements: 

 

• Objective function: the objective function defines the measure of effectiveness of the system as a 
mathematical function of decision variables. 

• Variables and parameters of decision: the decision variables are the unknowns, or decisions, to be 
determined by solving the model. The parameters are known values which relate the decision variables with 
constraints and objective function. The model parameters can be deterministic or probabilistic. 

• Constraints: To take account of technological, economic and other system, the model should include 
constraints, implicit or explicit, that restrict decision variables to a range of feasible values 

 

CLASSIFICATION OF OPTIMIZATION ALGORITHMS 
In this chapter, we will provide a rough classification of the different optimization techniques which are a small 

fraction of the wide variety of global optimization techniques [Panos et al, 2000] 

 

1.1.1 
Figure 3.1 sketches a rough taxonomy of global optimization methods. Generally, optimization algorithms can be 

divided in two basic classes: deterministic and probabilistic algorithms. Deterministic algorithms are most often used 
if a clear relation between the characteristics of the possible solutions and their utility for a given problem exists. 
Then, the search space can efficiently be explored using for example a divide and conquer scheme. If the relation 
between a solution candidate and its “fitness” are not so obvious or too complicated, or the dimensionality of the 
search space is very high, it becomes harder to solve a problem deterministically. Trying it would possible result in 
exhaustive enumeration of the search space, which is not feasible even for relatively small problems. 

 

Classification According to Method of Operation 



 
Figure 3.1: The taxonomy of global optimization algorithms [Weise, 2009] 

 

Then, probabilistic algorithms come into play. Especially relevant in this context are Monte Carlo based 
approaches [Robert et al., 2006]. They trade in guaranteed correctness of the solution for a shorter runtime. This does 
not mean that the results obtained using them are incorrect, they may just not be the global optima. On the other hand, 
a solution a little bit inferior to the best possible one is better than one which needs 10100 years to be found. 

Heuristics used in global optimization are functions that help decide which one of a set of possible solutions is to 
be examined next. On one hand, deterministic algorithms usually employ heuristics in order to define the processing 
order of the solution candidates. Probabilistic methods, on the other hand, may only consider those elements of the 
search space in further computations that have been selected by the heuristic. 

A heuristic [Michalewicz & Fobel 2004][ Rayward-Smith et al, 1996] is a part of an optimization algorithm that 
uses the information currently gathered by the algorithm to help to decide which solution candidate should be tested 
next or how the next individual can be produced. Heuristics are usually problem class dependent. 

A metaheuristic is a heuristic method for solving a very general class of problems. It combines objective functions 
or heuristics in an abstract and hopefully efficient way, usually without utilizing deeper insight into their structure. 

This combination is often performed stochastically by utilizing statistics obtained from samples from the search 
space or based on a model of some natural phenomenon or physical process. Simulated annealing, for example, 
decides which solution candidate to be evaluated next according to the Boltzmann probability factor of atom 



configurations of solidifying metal melts. Evolutionary algorithms copy the behaviour of natural evolution and treat 
solution candidates as individuals that compete in a virtual environment. 

An important class of probabilistic, Monte Carlo metaheuristics is Evolutionary Computation [Heitkötter & 
Beasley, 1998]. It encompasses all algorithms that are based on a set of multiple solution candidates, called 
population, which are iteratively refined. This field of optimization is also a class of Soft Computing [Zadeh, 1994] as 
well as a part of the artificial intelligence [Buchanan, 2005] area. Some of its most important members are 
evolutionary algorithms and Swarm Intelligence. Besides these nature-inspired and evolutionary approaches, there 
exist also methods that copy physical processes like the before-mentioned Simulated Annealing, Parallel Tempering, 
and Raindrop Method, as well as techniques without direct real-world role model like Tabu Search [Glover & Laguna, 
1998] and Random Optimization.  

 

1.1.2 
The taxonomy just introduced classifies the optimization methods according to their algorithmic structure and 

underlying principles, in other words, from the viewpoint of theory. A software engineer or a user who wants to solve 
a problem with such an approach is however more interested in its “interfacing features” such as speed and precision. 

Speed and precision are conflicting objectives, at least in terms of probabilistic algorithms. A general rule of thumb 
is that you can gain improvements in accuracy of optimization only by investing more time. Scientists in the area of 
global optimization try to push this Pareto frontier [Pareto, 1906] further by inventing new approaches and enhancing 
or tweaking existing ones. 

Optimization Speed. When it comes to time constraints and hence, the required speed of the optimization 
algorithm, we can distinguish two main types of optimization use cases. 

Online optimization problems are tasks that need to be solved quickly in a time span between ten milliseconds to a 
few minutes. In order to find a solution in this short time, optimality is normally traded in for speed gains. Examples 
for online optimization are robot localization, load balancing, services composition for business processes, or updating 
a factory’s machine job schedule after new orders came in. From the examples, it becomes clear that online 
optimization tasks are often carried out repetitively new orders will, for instance, continuously arrive in a production 
facility and need to be scheduled to machines in a way that minimizes the waiting time of all jobs. 

In offline optimization problems, time is not so important and a user is willing to wait maybe even days if she can 
get an optimal or close to-optimal result. Such problems regard for example design optimization, data mining, or 
creating long-term schedules for transportation crews. These optimization processes will usually be carried out only 
once in a long time. Before doing anything else, one must be sure about to which of these two classes the problem to 
be solved belongs. 

 

Classification According to Properties 

SINGLE OBJECTIVE FUNCTIONS 

Optimization algorithms also can be divided in such which try to find the best values of single objective functions f 
and such that optimize sets F of target functions. This distinction between single-objective optimization and multi-
objective optimization is discussed in depth in Section 4.1. 

We have already said that global optimization is about finding the best possible solutions for given problems. Thus, 
it cannot be a bad idea to start out by discussing what it is that makes a solution optimal. 

In the case of optimizing a single criterion f, an optimum is either its maximum or minimum, depending on what 
we are looking for. If we own a manufacturing plant and have to assign incoming orders to machines, we will do this 
in a way that minimizes the time needed to complete them. On the other hand, we will arrange the purchase of raw 
material, the employment of staff, and the placing of commercials in a way that maximizes our profit. In global 
optimization, it is a convention that optimization problems are most often defined as minimizations and if a criterion f 
is subject to maximization, we simply minimize its negation (−f). 

Figure 3.2 illustrates such a function f defined over a two-dimensional space X = (X1, X2). As outlined in this 
graphic, we distinguish between local and global optima. A global optimum is an optimum of the whole domain X 
while a local optimum is an optimum of only a subset of X. 

 



 
 

Figure 3.2: Global and local optima of a two-dimensional function. [Weise, 2009] 

 

There is no simple answer to which optimization methods is the best for any given problem. It is all a matter of 
opinion; very much depending on the nature of the problem and the availability of different optimization software that 
fits the problem statement. 

In most comparison studies different methods come out on top depending on the problem and how well the 
different methods have been tuned to fit that particular problem. Comparative studies of different types of non-
derivative methods could be found in for instance [Borup and Parkinson, 1992] [Hajela, 1999] [Mongeau et al., 1998]. 
An interesting question that one should keep in mind when comparing different methods are the time spent on 
optimizing the different methods before they are compared. If a method is five percent faster then another one, but 
takes three times as long to implement and parameterize, it might not be worth the effort. 

 



MULTI OBJECTIVE FUNCTIONS 
 

In many practical problems, several optimization criteria need to be satisfied simultaneously. Moreover, it is often 
not advisable to combine them into a single objective. While it may sometimes happen that a single solution optimizes 
all of the criteria, the more likely scenario is when one solution is optimal with respect to a single criterion while other 
solutions are best with respect to the other criteria. The increase of the “goodness” of the solution with respect to one 
objective will produce a decrease of its “goodness” with respect to the others. While there are no problems in 
understanding the notion of optimality in single objective problems, multiobjective optimization requires the concept 
of Pareto-optimality. 

Real environmental and engineering problems are usually characterized by the presence of many conflicting 
objectives that the design has to fulfil. Therefore, it is natural to look at the engineering or environmental problem as a 
multiobjective optimization problem (MOOP). 

Multiobjective Optimisation (MOO) has its roots in the principles of economics and mathematics. It was initially 
restricted to economics field but has, in the recent decades, found its way to engineering where different objectives, 
conflicting or not, are all considered to be of importance. MOO is a generalization of Single Objective Optimization 
with the main distinction being that the former yields different values for the same objective function for the optimal 
solutions while the same objective function value is obtained for different optimal solutions in the latter. 

If a scenario involves an arbitrary optimization problem with M objectives, all of which to be maximized and 
equally important, a general multi-objective problem can be formulated as follows: 

 

nixxx
Kkxh

Jjxgtosubject
Mmxfmaximize

U
ii

L
i

k

j

m

,...,2,1

,...,2,1,0)(

,...,2,1,0)(:
,....,2,1),(

)()( =≤≤

==

=≥
=

 

where x is a vector of n decision variables: T
nxxxx ),...,,( 21= . In this case, a Pareto optimal objective vector 

1 2* ( *, *,..., *)Mf f f f=  is such that it does not exist any feasible solution x´, and corresponding objective vector 

1 2 1 2' ( ', ',..., ') ( ( '), ( '),..., ( '))M Mf f f f f x f x f x= =  such that * 'm mf f≤  for each 1,  2,...,  m M= and * 'j jf f< for at 

least one1 j M≤ ≤ .  

Many terms and fundamental ideas stem from these fields. The reader is referred to [Stadler and Dauer 1992], and 
[Stadler 1988] for extensive discussions of these topics and for the history of multi-objective optimization. 

The main elements of a decision problem include the design of promising, feasible alternatives and the subsequent 
selection of a solution, alternative, from a set of alternatives thus generated or identified. This decision process is 
based on: 

 

1. A set of Alternatives, which can be discrete and pre-existing, or generated on demand; 

2. A set of Criteria describing each of the alternatives; criteria can be qualitative or quantitative, cardinal, ordinal 
or nominal. 

3. Constraints describing acceptable lower or upper bounds on any one of the criteria; only a solution that meets 
all constraints is deemed a feasible alternative and subsequently considered. 

4. Objectives or objective function(s), expressed in terms of the criteria that should be minimized or maximized 
by the selection. 

5. A preference structure that defines the relative importance of different criteria in contributing to the objective 
function, and the different importance of different objectives in an overall evaluation 

 



BASIC CONCEPTS AND DEFINITIONS 
 

1.1.3 
Preferences refer to a decision-maker’s opinions concerning points in the criterion space. With methods that 

involve a posterior articulation of preferences, the decision-maker imposes preferences directly on a set of potential 
solution points. Then, theoretically the final solution reflects the decision-maker’s preferences accurately. With a 
priori articulation of preferences, one must quantify opinions before actually viewing points in the criterion space. In 
this sense, the term preference often is used in relation to the relative importance of different objective functions. 
Nonetheless, this articulation of preferences is fundamentally based on opinions concerning anticipated points in the 
criterion space. 

A preference function is an abstract function, of points in the criterion space, in the mind of the decision-maker, 
which perfectly incorporates his/her preferences. 

 

Preferences 

1.1.4 
In the context of economics, utility, which is modelled with a utility function, represents an individual’s or group’s 

degree of contentment [Mansfield 1985]. This is slightly different from the usual meaning of usefulness or worth. 
Instead, in this case, utility emphasizes a decision-maker’s satisfaction. In terms of multiobjective optimization, an 
individual utility function is defined for each objective and represents the relative importance of the objective. The 
utility function U is an amalgamation of the individual utility functions and is a mathematical expression that attempts 
to model the decision-maker’s preferences. It is used to approximate the preference function, which typically cannot 
be expressed in mathematical form. 

 

Utility Function  

1.1.5 
A global criterion is a scalar function that mathematically combines multiple objective functions; it does not 

necessarily involve utility or preference. 

 

Global Criterion 

1.1.6 
Stadler [Stadler,1988] writes that “the mathematical and economic approaches [to multi-objective problems] were 

eventually united with the inception of game theory.” According to the traditional game theory interpretation, a game 
is any situation of conflict or cooperation between at least two players with multiple possible strategies or moves. 
Game theory represents multi-objective optimization with multiple decision-makers, each controlling certain design 
variables [Vincent 1983]. If all players cooperate, the result is the same as a single player acting as a decision-maker 
for a multi-objective optimization problem. 

 

One of the predominant classifications of multiobjective approaches is that of scalarization methods and vector 
optimization methods. Given a vector of objective functions, it is possible simply to combine the components of this 
vector to form a single scalar objective function, hence the term scalarization. Although few authors make the 
distinction, the term vector optimization loosely implies independent treatment of each objective function. Both 
approaches are discussed in this study. 

 

Game Theory 

1.1.7 
Pareto efficiency, or Pareto optimality, is a concept in 

Pareto Optimality 

economics with applications in engineering and social 
sciences. The term is named after Vilfredo Pareto [Pareto 1906)], an Italian economist who used the concept in his 
studies of economic efficiency and income distribution. 

In many practical problems, several optimization criteria need to be satisfied simultaneously. Moreover, it is often 
not advisable to combine them into a single objective. While it may sometimes happen that a single solution optimizes 
all of the criteria, the more likely scenario is when one solution is optimal with respect to a single criterion while other 
solutions are best with respect to the other criteria. The increase of the “goodness” of the solution with respect to one 
objective will produce a decrease of its “goodness” with respect to the others. While there are no problems in 
understanding the notion of optimality in single objective problems, multiobjective optimization requires the concept 
of Pareto-optimality. 
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The solution is said to be Pareto-optimal (belongs to the Pareto-optimal front, or set of solutions) if, with its change 
not one objective function can be improved without degrading all of the others. All of the solutions that make up a 
Pareto-optimal front are said to be nondominated, by other solutions. Concepts of the Pareto optimal front, non-
dominated and dominated solutions are further explained in figure 4.1. The axes on figure 4.1 (F1 = 1/irrigation and 
F2 = yield) are two objective functions. Possible solutions for maximization are presented in the F1-F2 plane. 
Solutions marked with red circles are called nondominated and they make up the Pareto-optimal front. Those marked 
with blue circles are the dominated. non- Pareto optimal, solutions. 

A feasible point is considered to be a solution to a multi-objective optimization problem, and is called Pareto 
optimal, when there exist no other feasible point that improves one of the objectives without worsening at least one of 
the other objectives. The set of these mathematically equivalent point is often referred to as the Pareto set or Pareto 
front (red points in the next figure) 

 
 

Fig 4.1: Example of efficient (red) and non-efficient (blue) strategies of irrigation and production 

1.1.8 
Efficiency, which is the same idea as admissibility or noninferiority [Steuer 1989], is another primary concept in 

multi-objective optimization and is defined as follows: 

A point, x* ∈ X, is efficient if there does not exist another point, x ∈ X, such that F(x) ≤ F(x*) with at least one Fi 
(x) <Fi (x*). Otherwise, x* is inefficient. 

The set of all efficient points is called the efficient frontier. Steuer also provides the following definition for 
nondominated and dominated points: 

A vector of objective functions, F(x*) ∈ Z, is non-dominated if there does not exist another vector, F(x) ∈ Z, such 
that F(x) ≤ F(x*) with at least one Fi (x) < Fi (x*). Otherwise, F(x*) is dominated. 

For all practical purposes, Definitions of efficient and non-dominated are the same. However, efficiency typically 
refers to a vector of design variables in the design space, whereas dominance refers to a vector of functions in the 
criterion space. 

The definition of Pareto optimality is similar to that of efficiency, and a Pareto optimal point in the criterion space 
is often considered the same as a non-dominated point. However, efficiency and dominance were originally given 
more general, less common definitions in terms of domination structures and convex cones [Yu 1974], [Yu and 
Leitmann 1974]. Pareto optimality is a subtly distinguishable special case of efficiency, but this distinction is 
irrelevant in terms of practical applications. 

 

Efficiency and Dominance 

1.1.9 
An alternative to the idea of Pareto optimality and efficiency, which yields a single solution point, is the idea of a 

compromise solution [Salukvadze 1971]. It entails minimizing the difference between the potential optimal point and 
a utopia point, also called an ideal point, which is defined as follows [Vincent and Grantham 1981]: 

Utopia Point: A point, Fº ∈ Zk, is a utopia point iff for each i = 1, 2 . . . , k,  

Compromise Solutions 

Fºi = mínimumx {Fi (x) |x ∈ X}. 



 

In general, F◦ is unattainable. The next best thing is a solution that is as close as possible to the utopia point. Such a 
solution is called a compromise solution and is Pareto optimal. A difficulty with the idea of a compromise solution is 
the definition of the word close. The term close usually implies that one minimizes the Euclidean distance N(x), which 
is defined as follows: 

 
 

However, it is not necessary to restrict closeness to the case of a Euclidean norm [Vincent 1983]. In addition, if 
different objective functions have different units, the Euclidean norm or a norm of any degree becomes insufficient to 
represent closeness mathematically. Consequently, the objective functions should be transformed such that they are 
dimensionless.  

 

CLASIFICATION OF MULTI OBJETIVE OPTIMIZATION METHOS 
The variety of techniques for ‘solving’ an MCA problem has grown rapidly over recent decades. [Weistroffer et al. 

2005)] review 79 MCA software packages which implement a variety of MCA methods. Recent review papers 
identify hundreds of MCA techniques for ranking or scoring options, weighting criteria and transforming criteria into 
commensurate units [Figueira et al., 2005]; [Pohekar and Ramachandran, 2004]; [Hayashi, 2000]. 

From a general point of view we must consider two types of approaches, depending on the type of problem to 
solve: 

Multi-criteria Ranking and Benchmarking. Given a set of objects each described by multiple attributes or criteria 
(e.g., watershed characteristics, slopes, soils, land-cover, agricultural management practices, rainfall patterns) the 
system supports the interactive ranking of the set by any or all of the criteria in any arbitrary combination. The 
benchmarking concept introduces a context for evaluation, and relative positioning of objects in relation to known 
reference cases rather than isolated and in more difficult to interpret absolute terms in the absence of general standards 
that can be used as constraints. 

Complex Optimization. In the previous case the set of alternatives were supposed to be given. If we have a model 
or set of models describing a complex system, we can generate any number of alternatives, and apply the above 
elements to identify a bets, most desirable solution, and in fact design it automatically to meet all constraints and 
minimize or maximize the objective functions. Since large, complex system are usually non-differentiable unless 
simplified considerably, and all observation are highly uncertain, especially in the risk analysis domain, we extend the 
set of criteria and measure similarity in term of distance in a N dimensional behaviour space. The underlying methods 
is a hybrid of several heuristic methods, including Monte Carlo, stochastic hill-climbing, linear and dynamic 
programming, and evolutionary algorithms to make the search procedure more efficient and avoid computability 
issues of combinatorial explosion. However, for large systems, the method is very compute intensive, which is the 
price for a detailed and more realistic model description, coupled, dynamic, spatially distributed, non-linear. 

Discrete MC Optimization. This is an implementation of the reference point methodology of multi-attribute 
theory. Its basic advantage is simplicity, the use of a minimum set of assumptions, so that it lends itself to interactive 
use. Here we use the N dimensional geometry of the behaviour space, defined by the set of alternatives, to define 
measures of achievement, the objective function, given the distance of any alternative from utopia, or a user-defined 
reference point. The implicit normalization of the criteria (dimensions) to the interval between nadir and utopia as a 
degree of (possible) achievement makes it possible to use an effective strategy without eliciting complicated weights 
or preferences from the user. The method first partitions the search space into dominated and nondominated 
alternatives (i.e., generating a Pareto-optimal sub-set) always depending on the user’s choice of the criteria to be 
considered, and any constraints specified. 

 

1.1.10 
Classification presented in Fig. 4.2 indicates generally adopted differentiation amongst approaches and 

mathematical mechanisms used to support evaluation of decision elements in search for optimal, compromise or best 
solution. Most important are:  

 

Standard Classifications  



• MOLP (Multiple Objective Linear Programming), a tool to select the best solution among the efficient ones. A 
number of different MOLP procedures have been reported, of which GP (Goal Programming) is best known. 
The weighted-sum technique and vector-maximum algorithms are regarded as members of the more frequently 
applied MOLP approaches. In agricultural/water management they are not frequently used.  

 
Fig 4.2: Multicriteria decision-making: classifications and characteristics 

 

• MOMP (Multiple Objective Mathematical Programming) encapsulates several problem types, such as above 
mentioned MOLP, MOILP (Multiple Objective Integer Linear Programming), and NMOO (Nonlinear Multiple 
Objective Optimization). Among methods for solving multiple objective decision problems, a typical one is 
again GP. There is recently reported application of GP in India for selecting the best irrigation project including 
selection of best combination of 7 potential surface reservoirs to meet prescribed water demands, not only 
irrigational, [Raju and Pillai, 1999].  

 

• MAUT (Multi-Attribute Utility Theory) gathers broad spectrum of methods to select the best solution among 
the nondominated ones, as illustrated in Fig. 4.1. Frequently used methods for solving MAUT problems are: (1) 
Analytic Hierarchy Process (AHP) [Saaty, 1980] characterised by pair wise comparisons among decision 
elements and linear additive utility function (also SMART - which stands for Simple Multiattribute Rating 
Technique; SMARTS – which is SMART with Swing weights; and SMARTER – to make things even simpler), 
and (2) Outranking methods (PROMETHEE and ELECTRE) characterised by producing a (weak) ordering of 
alternatives.  

 

 
Fig 4.3: American and European school of thinking [Srdjevic et al. 2004] 

 

1.1.11 
Two general multicriteria decision making (MCDM) approaches can be distinguished: the first referred to as ‘Top 

down design’ which is ‘objective led’, and the second one referred as ‘Bottom up design’ which is alternative led. 
They are also known as American and European school of thinking Fig. 4.3. Notice. however, that both ‘schools’ are 
present worldwide and that scientific community does not demonstrate any significant preference or bias among them. 

Multicriteria Decision Making Methods  

In certain phase of the decision-making process the decision matrix (in different contexts also called product 
matrix, payoff matrix, performance matrix, decision table et.) is created. It is a prerequisite for most MCDM methods. 
Entries of this matrix represent scores (ratings) rij of alternatives (A1, ..., An) with respect to criteria (C1, ..., Cm). 



Values (w1, .., wm) written above the matrix (1) are the importance weights of criteria defined by the DM, or derived in 
another way; they usually (but not necessarily) sum 1. 

 

 
 

Several methods use matrix (1) directly such as: 

 

•SAW (Simple Additive Weighting). This is one of the most simple, but nevertheless good decision making 
methods. Its results are usually very close to more sophisticated methods. SAW consists of three basic steps:  

1 - scale the scores to make them comparable,  

2 - apply criteria weights, and  

3 - sum the values along rows and select best (top ranked) alternative.  

•SPW (Simple Product Weighting). This method is similar to SAW, except the products of rij along rows of the 
matrix are used instead of summations. In SPW applications scaling is not necessary, as well as normalization, 
however both are permitted.  

•TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). It is rational and relatively simple 
method developed by [Hwang and Yoon, 1981]. The underlying concept is that most preferred alternative should not 
only have shortest distance from ‘ideal’ solution, but also longest distance from ‘negative-ideal’ solution. TOPSIS 
evaluates a decision matrix in several steps starting by normalizing columns and then multiplying values in columns is 
by corresponding weights of criteria. Then, best and worst value in each column is identified followed by creation of 
two sets of these values across all columns named ideal solution and negative-ideal solution, respectively. In the next 
step so-called separation measures for all alternatives are computed based on their Euclidean distances from ideal and 
negative-ideal solutions (across all criteria). Finally, the relative closeness to ideal solution is calculated for each 
alternative, and alternatives are appropriately ranked. Top-ranked alternative is with the shortest distance from ideal 
solution and TOPSIS guarantees that it also has the longest distance from negative-ideal solution. In modified version 
of TOPSIS, which is also in use, the first step related to normalization is performed differently, achieving those entries 
in each column of normalized decision matrix sum 1. Also, ideal solutions are determined differently than in standard 
TOPSIS [Deng et al, 2000].  

•CP (Compromise Programming). This technique ranks alternatives according to their closeness to so called 
'utopia' point. The best alternative is the one whose point is at the least distance from utopia point in the set of efficient 
solutions. Minimisation of this closeness is a surrogate of the standard maximization of the criterion function. The 
distance measure used in CP is the family of Lp–metrics defined in especial way [Zeleny, 1982] and with a parameter 
p to implicitly express the DM's attitude to balance criteria (p = 1), to accept decreasing marginal utility (p > 1), or to 
search for absolutely dominant solution (p = ∞ ). The most common value is p = 2. Whichever parameter value is 
used, an alternative with minimum Lp–metric is considered as the best.  

Notice that above mentioned methods can be fuzzified [Triantaphyllou and Lin, 1996). While standard versions are 
frequently used, there are not relevant reported applications of their fuzzy versions. Other important MCDM methods 
are:  

•AHP (Analytic Hierarchy Process). This method has been developed in the 70ties and published in (Saaty, 1980). 
AHP decomposes a complex multi-factor problem into a hierarchy. It uses hierarchic structures, matrices and linear 
algebra to formalize the decision processes. The AHP determines the priorities of each alternative with the assigned 
weight for each alternative by analysing the judgmental matrices and by applying mathematical theory of eigenvalues 
and eigenvectors. AHP combines both subjective and objective judgments in an integrated framework based on ratio 



scales from simple pair wise comparisons. In last 3 decades it has been used in for analysing various agricultural and 
water management problems see [Ramanathan and Ganesh, 1995]; [Srdjevic et al., 2002]; [Zoranovic and Srdjevic, 
2003]; [Zhang et al., 2004]; [Chiou, 2004].  

 

 
 

Fig 4.4: Example of the construction of the hierarchy of decision for the multicriteria analysis 

 

•PROMETHEE and ELECTRE. These are two best known outranking methods developed by [Brans et al, 
1986])and [Roy, 1968]. They are characterized by an aggregation of criteria, where multicriteria value is replaced by 
single criterion and complete dominance relation is established. Typically, in interactive versions of these methods the 
decision maker’s preferences are not modelled globally, but incrementally. Enrichment of dominance relation is 
achieved by adding arcs to dominance relation and/or by building “fuzzy” dominance relations. Use of outranking 
relation is a decision aid itself; however it should be said that outranking methods in a way narrow the choices 
[Shafike et al, 1992]. Both methods are often used in the different fields of agricultural and water management. 
PROMETHEE, for example, is used for analysis and assessment of financial viability of agribusinesses [Baourakis et 
al, 2002], for simultaneous kinetic-spectrophotometric determination of carbamate pesticides [Ni et al, 2004] and for 
ranking of different agricultural production options (Parsons, 2002); ELECTRE is used for evaluation of floodplain 
restoration alternatives [Zsuffa and Bogardi, 1995]; combined with GIS in the model MEDUSAT for assessing the 
land suitability in Switzerland [Joerin et al, 1998]; and also for outranking a series of water pricing policies in the Ebro 
river basin of the Huesca region in Spain [Breuil et al., 2000].  

 

•DEA (Data Envelopment Analysis). This is a special method that do not use decision matrix directly. While 
standard MCDM tools are used to select a best alternative, DEA evaluates the efficiency of a group of alternatives, but 
does not indicate a clear winner. DEA has a multicriteria flavour: minimize all inputs, and maximize all outputs. 
Standard version of DEA does not use DM’s preferences over inputs and outputs, however, this can be done. There 
are several weight restrictions related to criteria that lead to various versions of the method [Sarkis, 2000]. An 
interesting application of this method in selecting best long-term water management scenario can be found in 
[Srdjevic et al, 2004].  

 

1.1.12 
The central issue in ranking management scenarios by technical system’s performance is how to preserve 

objectivity of the process, i.e. to reduce or eliminate influence of the DM. Also we need to find the global optima in 
many real-life (environmental management) MOMP (Multi-objective mathematical programming) problems is a 
difficult task, especially when the search space has local extreme. Indeed, such problems often involve large and 
complex search spaces (non derivative), multiple conflicting objective functions, and a host of uncertainties that 
require consideration. In those situations, intelligent techniques could be the solution. 

Amongst instruments, mechanisms, and methodologies that can be categorized as ‘intelligent’ support to the 
decision-making, three groups can be identified:  

Intelligent Support to the Decision-Making Process 

• Expert Systems (ES). 

• Stochastic Search Engines (SSE) also called Evolutionary Algorithm (EA).  

 



All they found place in engineering at various levels of implementation. While ES are self-contained and 
discipline-oriented, SSE are typically imbedded into more complex programming systems to serve as quick and 
efficient search mechanisms over infinite solution spaces, that is in solving multimodal and NP-hard optimization 
problems or in searching for undominated solutions within complex decision space. The EAs, such as genetic 
algorithms (GA), simulated annealing (SA), tabu search (TS), and multi-objective differential evolution (MODE) are 
natural candidates for solving these problems and are preferable to the MOMP methods because of their simplicity, 
flexibility, ease of operation, minimal requirements, and global perspective [Oduguwa et al., 2005]. The EAs operate 
on a population of potential solutions based on two principles: selection and variation. While selection mimics, the 
competition for reproduction and resources among living beings, variation imitates the natural capability of creating 
new living beings by means of recombination and mutation [Shen et al., 2010]. Multi-objective EAs have received 
tremendous attention in recent years [Ahn, 2006; Abraham et al., 2005]. 

 

•ESs (Expert Systems): ESs are considered as a special field of Artificial Intelligence. Their success lies in their 
ability to analyze large amounts of information according to pre-established rules resembling the reasoning of a 
human expert or group of experts. ES uses a collection of facts, rules of thumb, and other knowledge to help make 
inferences on how to deal with the problem under consideration. ESs differ substantially from conventional computer 
programs in that their goals may have no mathematical solution, and they must make inferences based on incomplete 
or uncertain information. Typical structure of advanced ES in environmental resources generally is: (1) a data base 
and interactive editor tools to maintain/compare multiple alternatives; (2) a multiple-layer (hierarchical) GIS covering 
the entire are as well as the areas immediately affected by individual projects (the GIS may use both vector data and 
satellite imagery); and (3) a set of special data bases, e.g. on plant coverage, meteorology, hydrography, water quality 
observations, population, forestry coverage, environmental technologies (such as waste water treatment), etc. 
Regarding architecture of ES, it includes: 

(1) Knowledge base with checklists, rules, background information and guidelines and instructions for the analyst;  

(2) Inference engine, that guides the analyst through a projects assessment in a simple menu-driven dialogue;  

(3) Report generator, that summarizes and evaluates the assessment or decisions.  

 

•SSE (Stochastic Search Engines): The dominant classes of stochastic search engines are Simulated Annealing 
(SA), Tabu Search (TS), Genetic Algorithms (GAs) and Ant Colony Optimization (ACO). To understand the power of 
SSEs, recall that there are three main types of traditional (conventional) search methods:  

(1) Calculus-based. 

(2) Enumerative. 

(3) Random.  

Calculus-based methods (also referred to as gradient methods), such as well-known conjugate-gradient or quasi-
Newton method, use the information about the gradient of the function to guide the direction of search. If the 
derivative of the function cannot be computed, because it is discontinuous, for example, these methods often fail. 
Gradient-type methods are generally referred to as hill climbing. They do not adapt well to variable, fractal, or 
discontinuous surfaces, so they have serious shortcomings when applied to more complex, multimodal problems 
because of their inability to escape from local optima. Enumerative methods work within a finite search space: 
algorithm starts looking at objective function values at every point in the space, one at a time. Random search methods 
are strictly random walks through the search space while saving the best. For example GAs, as representative SSEs, 
differ from conventional optimization/search procedures in that:  

(1) they work with a coding of the parameter set, not the parameters themselves;  

(2) they search from a population of points in the problem domain, not a singular point;  

(3) they use payoff information as the objective function rather than derivatives of the problem or auxiliary 
knowledge;   

(4) they utilize probabilistic transition rules based on fitness rather than deterministic one.  

 

On the other side, ACO emulates distant sharing of information that is usually considered as distributed 
intelligence.  

 



Simulated Annealing (SA) is invented by [Irkpatrick in 1983].The SA is a generic probabilistic meta-heuristic 
model used to find the global optimisation in multicriteria problems with discrete search space, namely locating a 
good approximation to the global optimum of a given function in a large search space [Bertsimas and Tsitsiklis, 1993]. 
The name of the method and the inspiration come from annealing in metallurgy, a technique involving heating and 
controlled cooling of a material to increase the size of its crystals and reduce their defects [Cerny, 1985]; [Kirkpatrick 
et al., 1983]. 

SA is applicable to problems for which little prior knowledge is available. It produces high-quality solutions for 
hard combinatorial optimization problems. Each step of the SA algorithm replaces the current solution by a random 
‘nearby’ solution, chosen with a probability that depends both on the difference between the corresponding function 
values and also on a global parameter (called the temperature), that is gradually decreased during the process. The 
dependency is such that the current solution changes almost randomly when the temperature is high, but increasingly 
‘downhill’ as the temperature moves towards zero. The allowance for ‘uphill’ moves saves the method from becoming 
stuck at local optima – which are the bane of greedier methods. 

Tabu Search (TS) was proposed in its present form in 1989 by Fred Glover [Glover, 1989], although its roots are 
going back to the late 60’s and early 70’s. The TS is a meta-heuristic algorithm that belongs to the class of local search 
techniques and can be used to solve combinatorial optimisation problems. TS enhances the performance of a local 
search method by using memory structures. It is based on the premise that intelligent problem solving requires 
incorporation of adaptive memory. TS solves combinatorial optimization problems by guiding a hill-climbing 
heuristic to continue exploration without becoming confounded by a lack of improving moves, and without falling 
back into a local optimum from which it previously emerged. The admissible move is applied to the current solution in 
each iteration by transforming it into its neighbour with the smallest cost. Solutions that increase the cost function are 
permitted, and the reverse move is prohibited for some number of iterations in order to avoid cycling. The restrictions 
are based on a short-term memory function, which determines how long a tabu restriction will be enforced, or, 
alternatively, which moves are admissible in each iteration. In brief, TS is a meta-heuristic global technique that has to 
be adapted to the problem at hand for it to be efficient. TS has been applied successfully to a large number of hard 
optimization problems and has been shown to compare favourably with SA and GAs. The TS modifies the 
neighbourhood structure of each solution as the search progresses to explore regions of the search space that would be 
left unexplored by the local search procedure [Glover and Laguna, 1997]. 

 

Genetic Algorithms (GAs) derive their inspiration from the natural process of biological evolution [Goldberg, 
1989]. Solutions are encoded into (often binary) strings or chromosomes and the GA operates on a population of these 
chromosomes. Significant difference between GA and the other global search techniques is that it allows for a parallel 
search of the space since a population of points is considered at each step instead of just a single point. A solution is 
represented as a “genome”. The optimization starts with an initial “population” of “genomes”. With each iterative step 
the “genomes” of the “population” are evaluated with a defined objective function and the “fittest genomes” are 
chosen to be recombined. The newly generated solutions or “offspring genomes” also are evaluated and the least 
“fittest genomes” are excluded from the population to maintain the original population size. Process iteratively 
evolves to the required solution by creation of new and new generations of chromosomes through operations of 
fitness-based selection and reproduction with crossover and mutation that are fundamentally similar to their natural 
analogy. A class of GAs comprises probably the most prominent and most popular intelligent algorithms nowadays. 

 

 
Fig 4.5: General Scheme of the Evolutionary Algorithm 



 

While methods used in the scalarised problem generate a single (local) optimum, the evolutionary optimisation in 
MOO generates a representation of the complete Pareto optimal set. However, the visualization of the Pareto set is 
impractical for more than 2 (or at most 3) dimensions, thus, for simplicity we consider the local optima convergence.  

Evolutionary algorithm optimizers are global optimization methods and scale well to higher dimensional problems. 
They are robust with respect to noisy evaluation functions, and the handling of evaluation functions which do not yield 
a sensible result in given period of time is straightforward. The algorithms can easily be adjusted to the problem at 
hand. Almost any aspect of the algorithm may be changed and customized. 

 

In extending the ideas of single objective EAs, two challenges have to be addressed [Deb, 1999]: 

a) Finding solutions which lie in the Pareto optimal front 

b) Maintaining a diverse population to prevent premature convergence to a local optimum and achieve to a well 
distributed trade-off front. 

 

In reality, the DM requires one solution irrespective of the many solutions that may be obtained in a MOO set up. 
Making the decision on a single solution out of many may prove to be a big challenge to the DM and would require 
provision of higher-level information which is often non-technical, qualitative and experience driven in nature. Ideally 
effort must be made to find a set of trade-off optimal solutions by considering all objectives to be important. After the 
trade-offs are found, then high-level qualitative information can be used to narrow down to one solution. This 
procedure is summarised in a two-step multiobjective optimisation as below: 

a) Step 1: Find multiple non-dominated points as close to the Pareto optimal front as possible with a wide trade-
off among objectives. 

b) Step 2: Choose one of the obtained points using higher-level information. 

 

 
Fig 4.6: Example of EMO Convergence to the Pareto Optimal Front 

 

Ant Colony Optimization (ACO): Insects’ behaviour more and more serves as an inspiration for developing 
intelligent mechanisms to support decision-making processes in various areas of engineering. In answering the 
question what is it all about, it should be said that recent researches proved the ability of ants to find the shortest path 
to a food source, and when an obstacle blocks the most direct path, their ability to very quickly find the next best 
route. If it ability is translated to glitches on the Internet or distribution networks, than the ants can offer some 
solutions. For example, if the nodes on one Internet network are clogged with too much traffic, it’s sometimes 
necessary to reroute new traffic. Ants that follow the shortest path are also those first making return trip to the food 
source. Therefore, their pheromone trail quickly becomes thicker. Even the heavier pheromone scents attract more 
ants and the shortest path is even further reinforced, there are always some ants that (meanwhile) follow their own trail 
and explore new routes. These individuals also lay down pheromone trails. So when, by analogy, a rock tumbles 
across the main route and traffic in the distribution network is jammed, the artificial ants are ready with a backup path. 



This ant is assumed to be an agent, which moves from city to city on a TSP (refers to a ‘travelling salesman problem’) 
graph [Dorigo and Gambardella, 1997]. Therefore, if decision problem can be modelled as combinatorial problem, or 
precisely as TSP, than the use of ACO algorithm is straightforward. More and more applications of ACO can be found 
in pertinent literature for exploring large solution spaces.  

 

METODOLOGY OF APPLYING MCA IN ENVIROMENTAL PROBLEMS 
The wide variety of multi-criteria methods in use for water management required an upfront definition to guide our 

review. There are a variety of terms used to refer to MCA. Some other names include multiple objective decision 
support (MODS), multi-attribute decision making (MADM) and multi-criteria decision analysis (MCDA). These 
approaches share the same fundamental theoretical underpinnings and are collectively referred to in this paper as 
MCA. MCA can be defined as a decision model which contains: 

 

• A set of decision options which need to be ranked or scored by the decision maker; 
• A set of criteria, typically measured in different units; and 
• A set of performance measures, which are the raw scores for each decision option against each criterion. 

 

 
Fig 4.7: Generic outline of the designing alternatives process 

 

The MCA model is represented by an evaluation matrix X of n decision options and m criteria. The raw 
performance score for decision option i with respect to criterion j is denoted by xi,j. A minimum requirement for the 
MCA model is at least two criteria and two decision options (n≥2 and m≥2). The importance of each criterion is 
usually given in a one dimensional weights vector W containing m weights, where wj denotes the weight assigned to 
the jth criterion. It is possible for X and W to contain a mix of qualitative (ordinal) and quantitative (cardinal) data. 

A great variety of MCA algorithms can be used to either rank or score the decision options. The MCA algorithms 
will define, by some means, one or both of these functions: 

 

ri = f1|(X,W) 

ui = f2|(X,W) 

 

Here ri is an ordinal number representing the rank position of decision option i and ui is the overall performance 
score of option i. The solution of ri and ui occurs within a broader MCA decision making process. Numerous authors 
[RAC, 1992], [Howard, 1991] have described the MCA process and it generally contains the following stages: 

 

1. Choose decision options. Usually there is a finite set of decision options which are to be ranked or scored, which 
creates a ‘discrete’ choice problem. In some cases the aim is to identify an optimum quantity subject to 
constraints, which creates a ‘continuous’ choice problem. 

2. Choose evaluation criteria. The criteria are used to measure the performance of decision options. They should be 
non-redundant and relevant to the decision maker’s objectives [Keeney and Raiffa 1993]. Redundant criteria are 
typically highly correlated and measure the same underlying factor. 

3. Obtain performance measures (xi,j) for the evaluation matrix. The values for xi,j may be either ordinal or cardinal, 
and can be sourced from expert judgements or other environmental and economic models. 



4. Transform into commensurate units. An MCA problem will almost always contain criteria in different units. 
Transformation places them onto a commensurate scale, often 0 to 1, so they can be meaningfully combined in the 
overall utility function. 

5. Weight the criteria. Criteria are rarely of equal importance to the decision maker and a variety of methods are 
available to assign weights at either cardinal or ordinal levels of measurement. 

6. Rank or score the options. At this stage the weights are combined with the performance measures to attain an 
overall performance rank or score for each decision option. A wide range of ranking algorithms, which use ordinal 
and/or cardinal properties of the performance measures, can be used in this task. 

7. Perform sensitivity analysis. Systematic variation of the weights, performance measures and ranking algorithms 
can reveal where the MCA model needs strengthening and the robustness of results given input assumptions. 

8. Make a decision. The MCA model aims to inform, but not make, the final decision. There is typically a 
requirement for some level of human judgement to account for relevant issues that could not be adequately 
modelled in the MCA. 

 

This process often involves several iterations, with earlier stages being revisited as the analysis unfolds. 

 

 
Fig 4.8: Generic outline of the multicriteria decision methodologies 

 

Improving decision making for human and natural resource management requires consideration of a multitude of 
non-economic objectives, such as biodiversity, ecological integrity, and recreation potential. Furthermore, the values 
of environmental attributes, such as biodiversity, cannot be properly measured using monetary criteria; appropriate 
non-monetary criteria need to be developed. 

The MCDA process (fig 1) typically defines objectives, chooses the criteria to measure the objectives, specifies 
alternatives, transforms the criterion scales into commensurable units, assigns weights to the criteria that reflect their 
relative importance, selects and applies a mathematical algorithm for ranking alternatives, and chooses an alternative 
[Howard, 1991], [Keeney, 1992], [Hajkowicz and Prato 1998]. Many authors have described and reviewed MCDA 
techniques (e.g., [Herath, 1982], [Smith and Theberge, 1987], [Stewart, 1992], [Hayashi, 2000]). 

 

DECISION SUPORT SYSTEM 

 

A DSS is computer based, including hardware, software, and data; it must assist in making non-trivial decisions, 
but beyond that, there is little agreement. Analysing the literature, the overwhelming number of cases that claim DSS 
status refer to relatively simple information and model systems that focus on problem representation and in most 
cases, WHAT-IF type scenario analysis. 

A considerably smaller group addresses optimization tools with usually a strong Operations Research and 
mathematical programming focus. 

 



The basic functions of a DSS include: 

(1) Identify and structure the problem, and define a consistent preference structure in terms of criteria, objectives, 
and constraints. 

(2) Design alternatives that provide solutions to the problem as posed. 

(3) Select preferred solutions from the set of alternatives based on the preference structure. 

 

Computerized models underpin resource management and provide for the encapsulation and transfer of knowledge 
about the agricultural processes. To be useful to managers, they are commonly augmented by other tools, which allow 
for scenario description, data exploration, explanation and assessment [Fedra, 1993]. Traditionally this has been 
achieved by developing Decision Support Systems (DSSs), which contain and enhance a suite of models, and are 
tailored to the clients' needs and expertise. 

The development of user-friendly software and operating systems, and increased access to and familiarity with 
computers among decision makers are probably the main reasons for such a growth in both research and practice. 
Recent applications in western countries demonstrated that certain DSSs, which incorporate simulation and 
optimization models with interactive graphics capabilities [Labadie, 1995]; [Azevedo et al, 2000]; [LABSID, 2004], 
were helpful in encouraging the acceptance of these techniques in practice. 

Many experts in early 90-ties have stressed the need for better communication between analysts and decision 
makers in substantial improving the usefulness of models. A good example of advances made in recent years is 
existence of advanced interactive user-friendly computer systems such as Web-HIPRE [Decisionarium, 2004] for 
decision-making through Internet. However, it is evident that there still exists a gap between theory and practice even 
in the West, and that decision makers have to articulate better their information needs while modellers must 
communicate effectively their results and co-operate with decision makers. The complexity and long development 
time, inherent in building DSS, are the most important reasons that prevented their wider use in developed and 
particularly undeveloped countries, including those in Balkan region. There is an obvious lack of case studies in which 
the performance of agricultural/water related DSSs has been evaluated in the appropriate institutional settings.  

The decision tools and DSS could be best described in terms of their general type and by focusing on the stage in 
the decision process being supported, from information gathering through storage to exploring alternatives. Several 
issues are worthily to discuss below: 

 

1.1.13 
Decision-making requires information that needs to be collected. An important source of social data is the 

governmental census. Other governmental and non-governmental sources could be opinion polls, natural resources 
inventories and commercial registers. These data need to be extracted and transferred from their current databases to 
the decision maker's database. Existing data are supplemented by surveys focused on the needs of the decision 
problem at hand. Different computer aids can be used, and most recently the use of the Internet may help if 
appropriate communication infrastructure is established. Another important source of information is remote sensing 
from satellites; this data would typically feed into geographic information systems (GIS). Large amounts of raw data 
from different sources and in different formats must be verified and often converted into formats suitable for other 
components of a DSS. This exemplifies the well-known problem of interoperability and data interchange. It should be 
also noted that data integrity is critical for computer-based modelling and knowledge based systems. A computerized 
statistical methods and rule-based systems are provided for analysis and pre-processing of data to check the integrity 
by discovering of discrepancies in received information.  

 

Information Collection and Management.  

1.1.14 
To explore the consequences of particular courses of action, models and facilities should built. That will enable 

manipulation and experimentation with variables representing characteristics of real systems within a predefined time 
scale. The most common modelling tools are simulation-modelling techniques. A complex DSS requires a collection 
of models. The software architecture should include facilities for model repository, selection of appropriate models 
and composition of subsets of models to solve complex problems. Therefore, the DSS should behave as open 
structure. Computers using mature software packages commonly support methods used in rational decision-making, 
such as multicriteria analysis and linear programming. The uncertainty prevalent in decision problems related to 
development, cause necessity for handling uncertainty and risk in these packages. This area of decision support is 
strongly problem-oriented and is in continuous development.  

Modelling and Rational Decision Support.  



 

1.1.15 
People participating in the decision-making process prefer to have pictures and diagrams to help them visualize the 

situation about which they must make a decision. Of more recent origin is the ability to display the rich and complex 
maps in multiple colours with a fine level of detail. These maps can display the spatial relationships between the 
elements of interest, and the geographical distribution of those elements through theme maps under user control. 
Humans have very powerful spatial reasoning capabilities, and the display of geographic data can tap into that 
reasoning power.  

 

Visualization and the Human Interface.  

1.1.16 
Sometimes decision-making is a group process through which various stakeholders need to reach agreement. Tools 

for group working and workflow are important in the common situation when the stakeholders involved are 
geographically dispersed and communication networks need to be exploited. Systems are commercially available 
using "groupware" to support collaborative working, the holding of meetings and so on. The recent rapid growth of the 
Internet enables making this support widely useful.  

 

Group Decision Making.  

1.1.17 
To capture knowledge about particular decision problem, one possible way is to do it through Knowledge Based 

Systems (KBSs) and Expert Systems (ESs). KBS generally contains a knowledge base and a problem solving 
mechanism known as inference method. ES is sometimes used as a synonym for KBS. Capturing the rules of KBS/ES 
can itself require great expertise, and a good technology here is that of rule induction - the system 'learns' the decision 
rules from examples of correct decision. Another learning method is imbedded in neural networks and technologies 
for their training. Collaboration between several KBS/ES could be useful in solving some problems in a way similar to 
decision making by an interdisciplinary group of experts. The application of KBS to capture expertise in sustainable 
development falls into two main categories: where the KBS is the core of the DSS, and where the KBS is an auxiliary 
to some other system. The first category is where there is human expertise in a subject area. The second category is 
where there is a need for expertise in handling the results from a certain model and/or software package in order to let 
the results of that system be comprehensible to the decision makers.  

 

Knowledge Capture and Representation.  

1.1.18 
A key capability of DSS is the interoperation of tools obtained from different sources. Decision maker would be 

able to choose the appropriate tool for a particular job and provide for input and output of transfer information as he 
explores the alternative decisions. This transfer of information is still difficult at present, in spite of rapid development 
in the field. There is a clear move towards more open systems that will provide for data interchange in producing and 
monitoring natural resources such as plant coverage, water, or forests. Standards developed for GIS in United States, 
United Kingdom, France, Canada and Australia are good example in this regard. As a toolbox, a GIS allows 
performing spatial analysis using its geoprocessing or cartographic modelling functions such as data retrieval, 
topological map overlay and network analysis. Of all the geoprocessing functions, map overlay is probably the most 
useful tool for planning and decision-making. For example, there is a long tradition of using map overlays in land 
suitability analysis. Decision makers can also extract data from the database of GIS and input it into different 
modelling and analysis programs together with data from other database or specially conducted surveys. GIS has been 
widely used in information retrieval, development control, mapping, site selection, land use planning, land suitability 
analysis, and programming and monitoring. GIS can be seen as one form of spatial DSS.  

 

DSS Integration.  



REVIEW OF BIOPHYSICAL MODELS LINKED TO MCO 
 

Nowadays, the MCDA method is widely used in many water resources and environmental management problems 
where conflict management and stakeholders’ participation is of prime importance. This method is a very useful tool 
for practical analysis to facilitate learning process between analyst and stakeholders [Marttunen and Suomalainen, 
2005]. Various studies have been undertaken on the theory and practical applications of MCDA [Marttunen and 
Suomalainen, 2005]; [Belton and Stewart, 2002]; [Hobbs and Meier, 2000]. Some good applications on water 
resources and environmental management have been done by [Gregory and Keeney, 1994], [Hostmann et al., 2005], 
[Raju et al., 2000], [Herath, 2004], [Lahdelma et al., 2000], [Marttunen and Hämäläinen, 1995], [Brown, 1984], 
[Ridgley and Rijsberman, 1992], [Stewart and Scott, 1995], [Arvai and Gregory, 2003], [Bella et al., 1996], [Ganoulis, 
2003], [Ning and Chang, 2002] etc. Stakeholders’ involvement is one of the crucial parts of the MCDA applications. 
Some of the ways of arranging stakeholders’ participation reported in previous studies are interviews with individual 
stakeholders or small groups, public consultations, workshops and decision conferences etc. [Hostmann et al., 2005]. 
Another important task in the MCDA applications is the evaluation of alternatives. Most of the methods are based on 
multiple objective programming and generating alternatives by maximizing a set of objectives [Rajabi et al., 2001]; 
[Ko et al., 1994]. There are some models that iteratively generate alternatives from stakeholders’ preferences [Cai et 
al., 2004].  

Water resource management decisions are typically guided by multiple objectives measured in a range of financial 
and non-financial units [Gough and Ward, 1996]. Often the outcomes are highly intangible and may include items 
such as biodiversity, recreation, scenery and human health. These characteristics of water planning decisions make 
multiple criteria analysis (MCA) an attractive approach. MCA can be defined as a grouping of techniques for 
evaluating decision options against multiple criteria measured in different units [RAC, 1992]; [Voogd, 1983]. A 
decision option is an action, or project, which contributes to the decision maker’s objectives. In discrete choice MCA 
there are a finite set of decision options being appraised. Weights can be assigned to criteria to represent their relative 
importance. Many researchers have found that MCA provides an effective tool for water management by adding 
structure, auditability, transparency and rigour to decisions [Dunning et al., 2000]; [Joubert et al., 2003]; [Flug et al., 
2000]; [Nayak and Panda, 2001]. 

In connection with climate change this might intensify existing impacts on the environment and lead to new 
conflicts between ecosystem services [Schröter et al. 2005, IPCC 2007]. For example, increased water use for 
irrigation could conflict with water demands for domestic or industrial uses, and lead to negative ecological 
implications [Bates et al. 2008]. Also, soil loss through erosion may increase due to climate change, an effect which 
could be aggravated through changes in land management [Lee et al. 1999]. To prevent continued degradation of 
natural resources, policy will need to support farmers’ adaptation while considering the multifunctional role of 
agriculture [Olesen and Bindi 2002]. Hence, effective measures to minimize productivity losses and preserve finite 
natural resources need to be developed at all decision levels, and scientists need to assist decision makers in this 
process [Salinger et al. 1999]. 

Multi-objective optimization methods in connection with biophysical models have shown great potential for 
addressing such issues of opposing management goals [Ines et al. 2006, Bryan and Crossman 2008, Higgins et al. 
2008, Sadeghi et al. 2009, Meyer et al. 2009, Whittaker et al. 2009 and Latinopoulos 2009]. Bryan and Crossman 
[2008] developed an optimization-based regional planning approach to identify geographic priorities for onground 
natural resource management actions that most cost-effectively meet multiple natural resource management 
objectives. Higgins et al. [2008] applied a multi-objective integer programming model, with objective functions 
representing biodiversity, water runoff and carbon sequestration. Sadeghi et al. [2009] applied an optimization 
approach to maximize profits from land use, while minimizing erosion risk. [Udias et al., 2007] and [Meyer et al., 
2009] coupled SWAT (Soil and Water Assessment Tool) with an optimization routine to determine optimum farming 
system patterns to reduce nitrogen leaching while maintaining income. Similarly, Whittaker et al. [2009] applied 
SWAT in connection with a Pareto-optimization approach considering profits from land use and chemical pollution 
from farm production. [Latinopoulos, 2009] applied optimization to a problem of water and land resource allocation in 
irrigated agriculture with respect to a series of socio-economic and environmental objectives. Such approaches can be 
very useful to support the development of regional land use adaptation strategies. However, they have not been used 
yet in combination with scenarios of climate change. 

Several authors also have combined the use of biophysical and multiobjective programming models. [Fernandez-
Santos et al.,1993] addressed the nitrate pollution problem in the province of Cordoba, in Spain, using the NTRM crop 
simulation model and a multi-objective programming model at the farm level. Flichman [Flichman et al., 1995 a, b] 
used the EPIC biophysical model to generate information on yields and nitrate pollution and a multi-objective 
bicriterion model, in order to analyze the impacts of the Common Agricultural Policy Reform on nitrate pollution in 
several European regions. More recently, Teague et al. used a bicriterion stochastic farm model combined with the 



EPIC-PST simulation model. The mathematical model employed the Target MOTAD technique, testing for the 
stochasticity of the environmental outcomes while maximizing net return. The two environmental criteria considered 
were nitrate and pesticide pollution. 

[Pandey and Hardaker, 1995] gave an overview of bio-economic modelling as a useful tool for studying the 
interaction between farm management practices and economic criteria to analyze sustainability of farming systems.  

Water resource planning and management is a sub-field of natural resource management in which decisions are 
particularly amenable to MCA [Romero and Rehman, 1987]. Decisions in water management are characterised by 
multiple objectives and multiple stakeholder groups. Outcome measures are in multiple financial and non-financial 
units. Decision makers are increasingly looking beyond conventional benefit cost analysis towards techniques of MCA 
that can handle a multi-objective decision environment [Prato, 1999]; [Joubert et al., 1997]; [Bana e Costa et al., 
2004].  

Effectiveness of this integration methodology is, however, directly influenced by the capability of the biophysical 
model used to estimate the real effect for a given environmental (water or land) use and management alternative and 
its ability to account for the various environmental factors that may affect the processes. Fortunately, over the last 
three decades, advances in hydrological science and engineering, as well as computer capabilities, have stimulated the 
development of a wide variety of mathematical simulation models for such estimates. The most comprehensive 
simulation techniques are process-based (physically based), distributed models such as SHE [Abbott et al., 1986], 
AGNPS [Young et al., 1987], ANSWERS-2000 [Bouraoui & Dillaha, 1996] and Soil and Water Assessment Tool, or 
SWAT [Arnold et al., 1999]. 

These models have replaced traditional lumped, empirical models that relate management and environmental 
factors to runoff and sediment yield through statistical relations. Distributed models are able to capture the spatial and 
temporal heterogeneity of environmental factors such as soil, land use, topography and climate variables Hydrological 
models themselves, however, are useful only for evaluating what-if scenarios and testing potential management 
alternatives. They are unable directly to solve water resources management and control problems that require the 
explanation of a range of available alternatives. 

A comprehensive decision-making framework for watershed management requires the integration of a hydrological 
simulation model and a suitable multi criteria optimization technique that is capable of solving complex control 
problems. These integrative methods, has been increasingly popular in water resources related fields and has provided 
solutions for large-scale problems in areas of reservoir management [Yeh, 1985]; [Unver & Mays, 1990]; [Nicklow & 
Mays, 2000], bioremediation design and groundwater management [Wanakule et al., 1986]; [Yeh, 1992]; [Minsker & 
Shoemaker, 1998)] design and operation of water distribution systems [Cunha & Sousa, 2000]; [Sakarya & Mays, 
2000]; [Udías et al., 2012] and watershed management, [Muleta & Nicklow, 2001]; [Nicklow & Muleta, 2001]; [Udías 
et al., 2011]. [Nicklow, 2000] provides a comprehensive review of the benefits of these kinds of approach, which 
include a reduced need for additional simplifying assumptions about the problem physics in order to reach an optimal 
policy and a decrease in size of the overall optimization problem 

TYPES OF MCA APPLICATION 

 

In this study eight types of MCA application in water resource management were identified: 

 

1. Catchment management. This involves applications of MCA to problems of whole catchment management, 
which are often concerned with land use and land management patterns. An example of this application can be 
drawn from [Chang et al., 1997] where MCA methods are employed to evaluate land management strategies 
within a catchment in Tweng–Wen reservoir watershed in Taiwan. Land use within the catchment is guided by 
economic and environmental objectives. 

2. Ground water management. These studies use MCA specifically for the management of groundwater, often to 
determine the best ways of remediation of contaminated groundwater supplies. It is illustrated by [Almasri and 
Kaluarachchi, 2005] who use MCA to evaluate options for managing nitrate contamination of groundwater in 
the Sumas–Blaine aquifer in Washington State, US. 

3. Infrastructure selection. These studies are concerned with choosing major water infrastructure supply options 
for a city or region. Most involve urban water supply. An example comes from [Eder et al., 1997] who use 
MCA techniques to evaluate 12 water supply infrastructure options for the Austrian part of the Danube River. 
The options involve major infrastructure such as hydroelectric power schemes. 

4. Project appraisal. These studies use MCA to rank or score a set of water management projects which often 
involve some form of water condition restoration activity. For example, [Al-Rashdan et al., 1999] use MCA to 
prioritise a set of projects aimed to improve the environmental quality of the Jordan River. 



5. Water allocation. These applications involve decisions about how much of a limited water resource is allocated 
to competing uses. An example comes from [Agrell et al., 1998] who use MCA to inform water release 
decisions from the Shellmouth Reservoir in south-west Manitoba, Canada. Water release aims to deliver on 
multiple social, economic and environmental uses. 

6. Water policy and supply planning. This involves the evaluation of policy options (e.g., levies, legislation, 
awareness raising) and longer term strategic planning for a region’s water supply. An example comes from 
[Joubert et al., 2003] where MCA is used to evaluate water demand and supply management policies in Cape 
Town, South Africa. 

7. Water quality management. These papers involved an application of MCA primarily involving the evaluation 
of options aimed specifically at improving water quality (as opposed to supply). They often involve human and 
ecosystem health objectives. An example comes from [Lee and Chang, 2005] where MCA is used to develop a 
water quality management plan for the Tou–Chen River Basin in northern Taiwan. 

8. Marine protected area management. This involves the use of MCA to manage nearshore marine environments. 
One such study by [Fernandes et al., 1999] uses MCA to evaluate coral reef management options in the 
Caribbean. 

 

An additional category was termed ‘method papers.’ These papers explored MCA methods for water management 
on a theoretical level. Some papers involved elements of two or more categories. 

The majority of applications are in water policy evaluation, water supply planning and infrastructure selection. 
These decisions often have deep and long-lasting impacts on numerous stakeholders. They involve a requirement to 
handle multiple objectives for which MCA is potentially well suited. Relatively few applications have occurred in 
marine protected area management [Fernandes et al., 1999]. These decisions typically involve multiple objectives and 
applications within this field may grow. 

 

REASONS FOR USING MCA IN WATER MANAGEMENT  
 

The water management MCA studies reviewed in this report provide insights to why MCA is adopted. This section 
briefly explores some of the main reasons researchers adopted MCA over alternative decision making frameworks. 

In many studies MCA was found to provide transparency and accountability to decision procedures which may 
otherwise have unclear motives and rationale [Brown et al., 2001]; [Joubert et al., 1997]. Transparency in MCA is 
achieved by explicitly stating and weighting decision criteria. The reasons for choice are made explicit and past 
decisions can easily be audited. For example, [Dunning et al.`, 2000] argue that MCA’s ‘logical’ and ‘well 
documented’ approach makes it suitable to support decisions under Section 316(b) of the US Clean Water Act, which 
deals with the selection of remediation technologies for mitigating point source water pollution. 

It is interesting to consider that whilst transparency is typically seen as a strength of MCA it may be a deterrent for 
some. Sometimes decision makers, either overtly or covertly, do not want to be too transparent. [Dunning et al.. 2000] 
suggest MCA may not be adopted for US water quality legislation because it is too ‘explicit’. 

Conflict resolution is a common reason for adopting MCA. It becomes an issue when multiple perspectives are 
applied to a single water management decision [Cai et al., 2004]; [Yin et al., 1999]; [Chuntian and Chau, 2002]; 
[Mustajoki et al., 2004]. A striking example comes from Mimi and [Sawalhi’s, 2003] use of multi-criteria techniques 
to inform the allocation of Jordan River water amongst Palestine, Israel, Syria, Lebanon and Jordan. 

The ability of MCA to help in conflict resolution partly results from its transparency. All parties are required to 
explicitly state their preferences through a structured process. It is then possible to identify areas of agreement and 
disagreement, thereby managing conflict. MCA can be used to identify shared solution space from multiple 
perspectives [Cai et al., 2004]. 

Multi-stakeholder engagement and community participation were also seen as reasons for adopting MCA in water 
management decisions [Greiner et al., 2005]; [Fernandes et al., 1999]; [Nayak and Panda, 2001]. [Brown et al., 2001] 
used MCA to engage stakeholders and build consensus based approaches to the management of a marine protected 
area. They found that (p432): 

The inclusion of stakeholder views and values within a rigorous framework can, potentially, provide rich 
information for regulators seeking to manage marine park resources in partnership with other stakeholders.” ... “We 
believe that participatory approaches are complementary, not oppositional, to decision support tools such as 
MCA.” 



Another common reason for adopting MCA for water management is that MCA uses formal axioms of decision 
theory to inform choice. This helps ensure the analysis is logical and robust. [Schultz, 2001] argues that basing the US 
Environmental Protection Agency’s Index of Watershed Indicators (IWI) on multiattribute utility theory would 
improve internal consistency and rigour. The adoption of formal rules for decision making can assist with auditability. 
An auditor can use an MCA model to recreate the decision problem at the time choices were made. Auditability is 
another reason for adopting an MCA approach.  

[Joubert et al., 1997] and [Prato, 1999] argue for the adoption of MCA to supplement benefit cost analysis (BCA). 
The two main limitations of BCA identified by these authors are: (a) a requirement for all outcomes to be expressed in 
monetary units and; (b) difficulties with achieving a fair distribution of resources amongst stakeholders. Water 
management decisions typically have important non-financial factors (e.g., health, biodiversity) and multiple 
stakeholder interests. The MCA framework ensures a robust analysis whilst permitting non-financial and distributional 
issues to be incorporated. This is prompting analysts to explore and apply MCA. However, [Joubert et al., 1997] note 
that MCA and BCA are complementary methods each with different roles in decision analysis. It is not a question of 
‘Which one is best?’ but rather ‘Which tool is best suited to a particular problem?’ 
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ANNEX 1: OTHER CLASIFICATION OF MDCA METHODS 

 

 

 

 



1 OTHER CLASIFICATION OF MDCA METHODS 

A general classification of MCDA methods is the one suggested by Belton and Stewart (2002) because it reflects 
more directly the range of their application. They classify MCDA methods into three broad categories: 

• Value measurement models: ‘‘numerical scores are constructed in order to represent the degree to which one 
decision option may be preferred to another. Such scores are developed initially for each individual criterion, 
and are then synthesized in order to effect aggregation into higher level preference models’’; 

• Goal, aspiration or reference level models: ‘‘desirable or satisfactory levels of achievement are established 
for each criterion. The process then seeks to discover options which are closest to achieving these desirable 
goals or aspirations’’; 

• Outranking models: ‘‘alternative courses of action are compared pairwise, initially in terms of each criterion 
in order to identify the extent to which a preference for one over the other can be asserted. In aggregating such 
preference information across all relevant criteria, the model seeks to establish the strength of evidence 
favouring selection of one alternative over another’’. 

 

In the first group, the values of alternatives reflect a preference order. These preferences are required to be 
consistent with a relatively strong set of axioms. Though in practice value measurement is not applied in such a rigid 
framework, these axioms: (a) ‘‘impose some form of discipline in the building up of preference models’’; (b) ‘‘help 
the decision-makers to obtain greater understanding of their own values and to justify their final decisions when 
required’’; (c) ‘‘encourage explicit statements of acceptable tradeoffs between criteria’’. 

The second group presents methods for ‘‘situations in which decision makers may find it very difficult to express 
tradeoffs or importance weights, but may nevertheless be able to describe outcome scenarios, expressed in terms of 
satisfying aspirations or goals for each criterion’’. Available courses of action (alternatives) are systematically 
eliminated until, in the view of the decision maker, a satisfactory level of performance for this criterion has been 
ensured. The process should be seen in a dynamic perspective. The decision maker should be able to backtrack the 
elimination process and cycle through it. 

The outranking models focus ‘‘on pairwise evaluation of alternatives, identifying incomparability’s as well as 
assessing preferences and indifferences’’. Preferences evolve ‘‘as part of the MCDA process within the context of the 
choices to be made’’. 

 

 
Fig A.1: example of peer comparison between objectives 

 

MCDA techniques encompass a wide variety of methods which belong to different axiomatic groups and schools 
of thought. Keeney (1982) defines MCDA as a formalization of a common sense approach to decision problems that is 
appropriate when decision problems are too complex to be solved by informal use of common sense. Several distinct 
schools of thought appear in the MCDA literature. Value and utility based approaches assume that there is a value 
function or utility function. Multiple attribute value theory (MAVT), multiple attribute utility theory (MAUT), and the 
simple multi-attribute rating technique (SMART) are the most common approaches within this school. MAVT belongs 
to the quantitative riskless category and MAUT and ELECTRE belong to the quantitative risk category. The Analytic 
Hierarchy Process (AHP), developed by Saaty (1977, 1980), uses the same paradigm as MAVT, and is the source of 
several other variants, such as the geometric mean approach and various modifications to incorporate risk and multi-
valued outcomes [Duke and Aull-Hyde 2002]. 

 

The most widespread ways or classify the multi-objetive optimization methods are based on the: 

• Depending on the alternatives domain 



• Depending on the moment in which decision markers introduce his preferences. 
 

ALTERNATIVES DOMAIN CLASSIFICATION 

The MCDM methods are frequently used to solve real world problems with multiple, conflicting, and 
incommensurate criteria. MCDM problems are generally categorised as continuous or discrete, depending on the 
domain of alternatives. Hwang and Yoon (1981) have classified the MCDM methods into two categories: multi-
objective decision-making (MODM) and multi-attribute decision-making (MADM). The main distinction between 
the two groups of methods is based on the number of alternatives under evaluation. MADM methods are designed for 
selecting discrete alternatives while MODM are more adequate to deal with multi-objective planning problems, when 
a theoretically infinite number of continuous alternatives are defined by a set of constraints on a vector of decision 
variables [Korhonen et al., 1992; Hayashi, 2000; Belton and Stewart, 2002]. 

MODM has been widely studied by means of mathematical programming methods with well-formulated 
theoretical frameworks. MODM methods have decision variable values that are determined in a continuous or integer 
domain with either an infinitive or a large number of alternative choices, the best of which should satisfy the DM 
constraints and preference priorities (Hwang and Masud, 1979; Ehrgott and Wiecek, 2005). MADM methods, on the 
other hand, have been used to solve problems with discrete decision spaces and a predetermined or a limited number 
of alternative choices. The MADM solution process requires inter and intra-attribute comparisons and involves 
implicit or explicit tradeoffs (Hwang and Yoon, 1981). Figure 1 shows the MCDM classification used in this paragrah. 
A more thorough distinction between these two groups of methods was made by Malczewski (1999) based on the 
differences pointed by Hwang and Yoon (1981) and Zeleny (1982).  

 

 
 

Fig A.2: MCDM Classification based on Domain 

 

1.1.1 
Most real-life decision problems involve multiple and conflicting objectives, sometimes subject to certain 

constraints. MODM is commonly used to solve these problems characterised by multiple and conflicting objective 
functions such as maximizing performance while minimising fuel consumption of a vehicle simultaneously over a 
feasible set of decisions. An MODM model considers a vector of decision variables, objective functions, and 
constraints (Chankong and Haimes, 1983; Ehrgott and Wiecek, 2005; Hwang and Masud, 1979; Kahraman and Kaya, 
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2008). The goal is to optimise the objective functions, while the DMs choose a solution among a set of efficient 
solutions since MODM problems rarely have a unique solution (Zhang et al., 2007). 

One of the most challenging problems in MODM applications is related to the identification or approximation of a 
family of points known as the Pareto-optimal set (Ehrgott, 2005). Pareto optimality is a measure of efficiency in multi-
objective optimisation. A large number of methods have been proposed to generate the Pareto optimal set in the 
literature. These methods vary from simple approaches, requiring very little information, to the methods based on 
mathematical programming techniques, requiring extensive information on each objective and the preferences of the 
DMs. There is no ‘one size fits all’ methodology for MODM problems. A method that works well in theory can fail in 
practice, one that works well on some problems may not be suitable for others. The majority of MODM methods fall 
into two broad categories: those employing mathematical programming techniques and those using evolutionary 
algorithms (EA). 

 

1.1.2 
The central issue in MOMP is the direct involvement of the DM in the process of searching for the best 

compromise solution on the basis of the individual preferences. A number of MOMP models and categories have been 
proposed since the early 70s. In MOMP, a set of linear functions are optimised subject to a series of linear constraints. 
When at least one objective function or constraint function is non-linear, we get a multi-objective non-linear 
programming problem. The MOMP becomes a convex problem, when all the objective functions and the constraint set 
are convex and non-convex optimisation problem, when at least one objective function or the constraint set is non-
convex (Chinchuluun and Pardalos, 2007). 

The methods for solving MOMP problems are also classified as a priori methods, interactive methods, and a 
posteriori methods (Hwang and Masud, 1979). In a priori methods, the DM expresses his/her preferences before the 
solution process (e.g., setting goals or weights for the objective functions). In interactive methods, the dialogue phase 
with the DM is interchanged with the calculation phase and the process usually converges after a few iterations to the 
most preferred solution. In a posteriori methods, the efficient solutions (all of them or a sufficient number of them) are 
generated before the DM intervenes and selects the most preferred solution. 

 

Multi-objective mathematical programming (MOMP) 

MOMENT DECISION MAKERS INTRODUCE PREFERENCES CLASSIFICATION 
When the decision-maker articulates his or her preference on the different objectives, never, before, during or after 

the actual optimization procedure 

When solving the MOO problem, we also seek to investigate the existence of a Pareto optimal solution. Since by 
deriving Pareto optimal solutions we only obtain a partial order of solutions, we require information on preference 
from the DM so as to be able to select the most preferred solution in the Pareto set. For this, there are two methods 
that are discussed: 

1. Non-Interactive methods: This is where the DM is not available to give preference or he gives preference a priori 
or a posteriori. A priori methods are described in the non-interactive approach methods where the DM specifies 
his preferences before the analyst generates the Pareto optimal solution set while in the a posteriori methods, the 
DM makes his preferences known from an already generated Pareto optimal solutions set. 

a. No-preference methods There is no opinion incorporated by the DM as it is possible that he does not 
feature in the solution process. The MOO is solved by finding a compromise solution say a solution in the 
middle of the Pareto optimal set. 

b. A Priori Methods In this method, the DM's role only occurs before the generation of the Pareto optimal 
solutions where he clearly stipulates his preferences initially. Several approaches that will be reviewed in 
this method are also applicable in a posteriori methods. Lexicographic, weighting, goal programming 

 

2. Interactive Methods: Here the DM is fully involved in the solution process and gives his input on preference. 
This arguably the best method for achieving the most preferred solution. In this methodology, participation and 
input of the DM is required throughout an iterative process between the decision making phase and the 
optimisation phase. After every iteration, the DM verifies that the output meets his preferences which have already 
been stipulated 

 



Below in this section, we make a short review of the different approaches to scalarising the general MOO problem 
to a single objective optimisation problem. Alternatively, we can solve MOO directly without scalarising the problem. 
These techniques are described in the next section of this report (MOO Algorithms Reviews) 

The neoclassical economic approach based on maximization of a single objective (i.e., utility for consumers and 
profit for businesses) has limited applicability in multi-attribute decision problems in natural resource management 
(Joubert et al. 1997). 

 

 
Figure A.3: A classification of some methods for multiobjective optimization 

 

GOAL PROGRAMIN (GP) 
The GP, which was first suggested by Charnes et al. (1955) and Charnes and Cooper (1961), is an analytical 

method devised to tackle decision-making problems where goals are assigned to multiple, possibly conflicting 
attributes, and where the DM seeks a satisfactory and sufficient solution by minimising the non-achievement of the 
corresponding goals. There are several classes of GP depending on the nature of the goal functions, decision variables, 
and coefficients. For example, goal functions may be linear or non-linear; decision variables may be continuous, 
discrete, or mixed; and coefficients may be deterministic, stochastic, or fuzzy. Surveys of GP are available in the 
works by Schniederjans (1995), and Zanakis and Gupta (1985). 

 

LEXICOGRAPHIC APPROACHES 
In lexicographic approaches, the decision-maker determines an order in which the objectives have to be optimized. 

Like in a dictionary where A precedes B, the decisionmaker determines that objective i precede objective j. This 
implies that solutions are ordered by first evaluating them based on the foremost objective. If a set of solutions have 
comparable values in the foremost objective, the comparison continues on lower level objectives until the solutions 
can be distinguished. The disadvantage with lexicographic approaches is that not all objectives might be considered. 
Lexicographic methods are not so commonly used by them self in engineering design, but jointly with other 
techniques, such as in goal programming or as a part of a selection mechanism in genetic algorithms. 

 



SCALARIZED SINGLE OBJECTIVE OPTIMISATION PROBLEMS 
In previous section (Preference in Pareto Optimal Solutions) of this report, we have reviewed the different 

approaches to scalarising the general MOO problem to a single objective optimisation problem. Scalarisation rewrites 
the problem in a form that can easily be solved with the algorithms used in solving a single objective optimization 
problems. In addition to that, the newly rewritten form also incorporates the input of the decision makers (DM). 

Solving this kind of problem results in obtaining one Pareto optimal solution that is preferred by the DM in a single 
run. Alternatively, we can solve MOO directly without scalarising the problem. For this, we use advanced algorithms 
that solve the MOO and simultaneously give a set of Pareto optimal solutions in a single run. Now, we briefly review 
algorithms that can be used on the scalarised problems and the evolutionary optimisation methods. 

 

1. Numerical Optimisation Methods in Scalarized Single Objective Optimisation Problems: 

The methods to be applied are dependent on whether the problem is linear, non-linear, continuous or discrete or 
some combination. Linear programming has been successfully applied in determination of optimisation operation 
policies for water supply systems. Quadratic programming has been applied when pumping costs depend on the 
drawdown. Fixed costs of installing new wells in ground water planning strategies use discrete optmization algorithms 
such as dynamic programming, branch and bound, local search and evolutionary algorithms. Monitoring of network 
design and groundwater remediation give rise to combinatorial problems that may also be solved using a discretized 
optimisation algorithm. 

Problems in water engineering are mostly non-convex and solving them with the methods discussed above in this 
section can often be a daunting task. A recent trend of mimicking biological processes in optimisation called bio-
inspired optimisatiom methods has emerged. These methods mimic the different biological processes in biology and 
translate them to algorithms in optimisation. 

The advantages for these methods include: they require very little knowledge on the problems being solved, they 
are robust and support parallel computing. Some of the bio-inspired methods include: evolutionary algorithms that 
mimic evolutionary theory, ant colony optimisation methods that mimic the movement of ants and particle swarm 
optimisation which mimic movement of birds/fish in a swarm. 

 

FUZZY LOGIC APPROACHES 

The concept of fuzzy sets is based on a multi-valued logic where a statement could be simultaneously partly true 
and partly false. In fuzzy logic, a membership function µ expresses the degree of truthfulness of a statement, in the 
range from µ=0, indicating that the statement is false to µ=1 for truth. This is in opposite to binary logic where a 
statement can be only false or true. 

In an optimization problem the membership function enables us to associate a normalized value to each objective 
µi(fi(x)), which expresses the degree of satisfaction of the considered objective i. The value of fi(x) is fuzzified by µi 
to yield a value in the rang {0,1}, which quantifies how well a solution satisfies the requirements. Examples of two 
membership functions are depicted in next figure. 

 
Figure A.4: A classification of some methods for multiobjective optimization 

 

In Figure A.4 we consider a fluid power system design, where we want to keep the losses low, say 50W is 
acceptable whereas 60W is not. We also want to have a constant system pressure of 150 bar. The corresponding 



membership functions could then look like in Figure 7. A membership function can have any shape. However, in the 
literatura piecewise linear functions are the most common. 

Ones the fuzzification has been performed the actual value of each objectives have been transformed into logical 
values. These values have to be aggregated to one in order to get an overall value for the design. In binary logic this is 
accomplished by the AND operator. However, in fuzzy logic the AND operator could be implemented by several 
different rules. The most common ones are the min operator and the product operator. The min operator returns as an 
output the minimum value of the mi on which is operates. As in binary logic, if one mi equals zero the output is zero. 
The product operator returns the product of all individual operators. This formulation is also compatible with the one 
of binary logic. The overall objective function could consequently be expressed as: 

 

 
The overall fuzzy optimization problem is formulated according to equation 

 

 
s.t. x∈S 

 

MULTI-ATRIBUTE DECISION-MAKING 
MADM methods are used for circumstances that necessitate the consideration of different options that cannot be 

measured in a single dimension. Each method provides a different approach for selecting the best among several pre-
selected alternatives (Janic and Reggiani, 2002). The MADM methods help DMs learn about the issues they face, the 
value systems of their own and other parties, and the organisational values and objectives that will consequently guide 
them in identifying a preferred course of action. The primary goal in MADM is to provide a set of attribute-
aggregation methodologies for considering the preferences and judgements of DMs (Doumpos and Zopounidis, 2002). 
Roy (1990) argues that solving MADM problems is not searching for an optimal solution, but rather helping DMs 
master the complex judgements and data involved in their problems and advance towards an acceptable solution. 
Multi-attributes analysis is not an off-the-shelf recipe that can be applied to every problem and situation. The 
development of MADM models has often been dictated by real-life problems. Therefore, it is not surprising that 
methods have appeared in a rather diffuse way, without any clear general methodology or basic theory (Vincke, 1992). 
The selection of a MADM framework or method should be done carefully according to the nature of the problem, 
types of choices, measurement scales, dependency among the attributes, type of uncertainty, expectations of the DMs, 
and quantity and quality of the available data and judgements (Vincke, 1992). Finding the ‘best’ MADM framework is 
an elusive goal that may never be reached (Triantaphyllou, 2000). 

 

ANALYTICAL HIERARCHY PROCESS (AHP) 
AHP is a MADM approach that simplifies complex and ill-structured problems by arranging the decision attributes 

and alternatives in a hierarchical structure with the help of a series of pairwise comparisons. AHP can be a powerful 
tool for comparing alternative evaluation systems and design concepts in CE. Dyer and Forman (1992) describe the 
advantages of AHP in a group setting as follows: 

1. the discussion focuses on both tangibles and intangibles, individual and shared values 
2.  the discussion can be focused on objectives rather than alternatives 
3.  the discussion can be structured so that every attribute can be considered in turn 
4.  the discussion continues until all relevant information has been considered and a consensus choice of 

the decision alternative is achieved. 

 

Saaty (2000) argues that a DM naturally finds it easier to compare two things than to compare all things together in 
a list. AHP also examines the consistency of the DMs and allows for the revision of their responses. AHP has been 
applied to many diverse decisions because of the intuitive nature of the process and its power in resolving the 
complexity in a judgemental problem. A comprehensive list of the major applications of AHP, along with a 
description of the method and its axioms, can be found in Saaty (1994, 2000), Weiss and Rao (1987), and Zahedi 
(1986). AHP has proven to be a popular technique for determining weights in multi-attribute problems (Shim, 1989; 



Zahedi, 1986). The importance of AHP and the use of pairwise comparisons in decision-making are best illustrated in 
the more than 1,000 references cited in Saaty (2000). 

The main advantage of AHP is its ability to rank alternatives in the order of their effectiveness in meeting 
conflicting objectives. AHP calculations are not complex, and if the judgements made about the relative importance of 
the attributes have been made in good faith, then AHP calculations lead inexorably to the logical consequence of those 
judgements. AHP has been a controversial technique in the operations research community. Harker and Vargas (1990) 
show that AHP does have an axiomatic foundation, the cardinal measurement of preferences is fully represented by 
the eigenvector method, and the principles of hierarchical composition and rank reversal are valid. On the other hand, 
Dyer (1990a, 1990b) has questioned the theoretical basis underlying AHP and argues that it can lead to preference 
reversals based on the alternative set being analysed. In response, Saaty (1990) contends that rank reversal is a 
positive feature, when new reference points are introduced. 

 

PREFERENCE RANKING ORGANISATION METHOD FOR ENRICHMENT EVALUATION (PROMETHEE) 
The PROMETHEE family of outranking methods was first introduced by Brans (1982) in the form of partial 

ranking of alternatives (PROMETHEE I). Subsequently, the method was extended by Brans and Vincke (1985) to a 
full ranking approach, which is presently known as PROMETHEE II. A few years later, several versions of the 
PROMETHEE methods such as PROMETHEE III, IV, V, and VI were developed to help with more complicated 
decision-making situations (Brans and Mareschal, 2005). The PROMETHEE methods have been successfully applied 
to various fields, including environment management (Martin et al., 2003; Queiruga et al., 2008), hydrology and water 
management (Pudenz et al., 2002; Hermans et al., 2007), and energy management (Goletsis et al., 2003; Madlener et 
al., 2007). 

Among the family of PROMETHEE method, PROMETHEE II is fundamental to the implementation of the other 
PROMETHEE methods (Behzadian et al., 2010). The central principle of PROMETHEE II is based on the pairwise 
comparison of alternatives along each attribute that is to be maximised or minimised. The implementation of 
PROMETHEE II requires relevant information concerning the weights and preference function of the attributes. For 
each attribute, the preference function translates the difference between the evaluations obtained by two alternatives 
into a preference degree ranging from 0 to 1. In order to facilitate the selection of a specific preference function, Brans 
and Vincke (1985) proposed six basic types, namely: usual attribute, U-shape attribute, V-shape attribute, level 
attribute, V-shape with indifference attribute, and Gaussian attribute. These six types are particularly easy to define. 

PROMETHEE takes into account the amplitude of the deviations between the evaluations of the alternatives within 
each attribute, eliminates the scaling effects completely, reduces the number of incomparabilities, provides 
information on the conflicting nature of the attributes, and offers sensitivity tools to test easily different sets of weights 
(Brans and Mareschal, 2005). Gilliams et al. (2005) have shown that PROMETHEE II is slightly preferable to both 
ELECTRE III and AHP, based on user friendliness, simplicity of the model strategy, variation of the solution, and 
implementation. Al-Shemmeri et al. (1997) have shown that PROMETHEE is easier than ELECTRE III to understand 
by the DMs and simpler to manage by the analysts. Despite its distinct advantages, the great weaknesses of 
PROMETHEE are its structuring of the decision problem and determination of the weights (Macharis et al., 2004). 

 

MULTI ATTRIBUTE UTILITY (VALUE) THEORY [MAU(V)] 

The MAUT, developed by Keeney and Raiffa (1993), is a systematic method for identifying and analysing multiple 
variables to provide a common basis for arriving at a decision. The key element in MAUT is to derive a multi-attribute 
utility function for which single utility functions and their weighting factors are necessary. Since its development, 
various applications of the MAUT have been reported in many real decision-making problems such as the selection of 
an energy resource (Abouelnaga et al., 2009), risk ranking of natural gas pipelines (Brito and deAlmeida, 2009), 
evaluation of public risk preferences in forest land-use choices (Ananda and Herath, 2005), and selection of the best 
scenario for the radioactive substances exposed to the environment (Hwang, 2004). 

Utility independence is a central concept in MAUT. Various utility-independence conditions imply specific forms 
of utility functions; however, only additive and multiplicative forms are generally used in practice. MAUT enables the 
DM to incorporate preference and value trade-offs for each metric and measure the relative importance of each 
attribute (Keeney and Raiffa, 1993). It is easy to understand and explain to DMs and provides a more practical 
methodology due to an easier computational analysis (Collins et al., 2006). The judgements in MAUT are made 
explicitly. Its value information can be used in many ways to help clarify a decision process, and DMs, typically learn 
a great deal through these joint efforts to construct their views on their preferences. However, the determination of the 
maximum and minimum ranges of the attributes and deriving work of the utility functions require a lot of time and 
effort in the MAUT (Kim and Song, 2009). 



 

 ELIMINATION AND CHOICE TRANSLATING REALITY (ELECTRE) 

The ELECTRE method is a family of outranking methods developed by Roy (1973) to rank a set of alternatives. 
Soon after the introduction of the first version known as ELECTRE I, this approach has evolved into a number of 
variants. Today, the most widely used versions are known as ELECTRE II and ELECTRE III (Wang and 
Triantaphyllou, 2008). ELECTRE is a procedure that sequentially reduces the number of alternatives the DM is faced 
with in a set of non-dominated alternatives. The ELECTRE method is especially well-known in Europe. It has been 
extensively applied in many real application cases, including environment management (Rogers and Bruen, 1998; 
Hobbs and Meier, 2000), education system (Giannoulis and Ishizaka, 2009), water resources planning (Anand, 1995), 
and waste management (Hokkanen and Salminen, 1997). 

The ELECTRE approach has a long history of successful practical applications in various problem domains 
(Achillas et al., 2010). With the ELECTRE, the DM is able to take into account either quantitative or qualitative 
attributes (Achillas et al., 2010). ELECTRE is quick, operates with simple logic, and has the strength of being able to 
detect the presence of incomparability; it uses a systematic computational procedure, an advantage of which is an 
absence of strong axiomatic assumptions (Shanian and Savadogo, 2006). While the applications of ELECTRE are 
well-documented in the literature, many authors have identified the allocation of weights as a major shortcoming of 
the method (Rogers and Bruen, 1998). In ELECTRE, similar to PROMETHEE, differences in attribute values are not 
taken into account totally; it does not matter how much as attribute value is better than that of another attribute 
(Salminen et al., 1998). 

 

POSTERIORI ARTICULATION OF PREFERENCE INFORMATION 

There are a number of techniques which enables to first search the solution space for a set of Pareto optimal 
solutions and present them to the decision-maker. The big advantages with these type of methods is that the solution is 
independent of the DM’s preferences. 

The analysis has only to be performed ones, as the Pareto set would not change as long as the problem description 
are unchanged. However, some of these methods suffer from a large computational burden. Another disadvantage 
might be that the DM has too many solutions to choose from. There is however methods that supports in screening the 
Pareto set in order to cluster optimal solutions. 
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